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Abstract

Large Eddy simulations (LES) of compressible mixing layers are carried out to investigate scalar mixing. Convective Mach numbers
of the simulations range from M c ¼ 0:16 to M c ¼ 1:1. In this study, the ability of two subgrid models (the dynamic Smagorinsky model
and the dynamic mixed model) to predict scalar mixing in compressible shear layers is assessed. Comparisons of the results with exper-
imental data show that the two subgrid closures are capable of capturing the principal effects of compressibility on scalar mixing,
especially the decrease of scalar statistics and the changes in the shape of turbulent structures.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The role of compressibility in turbulent mixing layers
remains an important issue in aeronautics, for example in
the design of high-speed propulsion devices. The stabilizing
effect of compressibility may reduce the efficiency of
engines in mixing the fuel and the oxidizer.

A great number of experimental studies have shown a
clear trend of reduced mixing layer growth rates with
increasing Mach numbers [1–6]. The convective Mach
number M c, introduced by Bogdanoff, measures the intrin-
sic compressibility of a mixing layer. Assuming equal spe-
cific heats, the convective Mach number is equal to
M c ¼ U1�U2

c1þc2
where U 1, c1 denote the velocity and the speed

of sound in the high-speed stream and U 2 and c2 denote the
corresponding quantities in the low-speed stream. Studies
have shown that in addition to decreasing mixing layer
growth rates, compressibility acts to suppress turbulence
intensities and Reynolds stress [2,3]. Several experiments
and numerical studies using both linear stability theory
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and direct simulations have shown that at low compress-
ibility (M c < 0:6), the structure is dominated by the two
dimensional Kelvin Helmholz instability [1,4,7]. At higher
levels of compressibility, the dominant instability waves
are oblique resulting in three-dimensional structures [4,7].
The effect of convective Mach number on the evolution
of instabilities and large-scale structures has also been
investigated by Sandham and Reynolds [8].

The physics of scalar mixing in low Mach number tur-
bulent shear layers is well understood. However the study
of scalar mixing in compressible, high Mach number shear
layers is more problematic since the experimental ability to
resolve small scale mixing is limited. Experiments were con-
ducted in a two-stream planar mixing layer at different con-
vective Mach numbers by Clemens and Mungal [4] and in
axisymmetric mixing layers by Clemens and Paul [9]. In
two-species shear layers, scalar mixing is also inhibited in
the presence of compressibility (see Clemens [4]) which
reduces the magnitude of mixture fraction fluctuations.
Increasing the Mach number is also found to change the
mixture fraction probability density functions and the
shape of turbulent structures.

Numerically, most of the simulations have been per-
formed for temporal evolving mixing layers. Those mixing
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layers develop in time and not in space, from specified ini-
tial conditions. The streamwise direction is homogeneous
and periodic boundary conditions are applied in this direc-
tion. Then, no inflow/outflow boundary conditions are
necessary in this approach. DNS of temporal evolving mix-
ing layers at different convective Mach numbers have been
performed by Pantano and Sarkar [10]. The principal com-
pressibility effects such as the reduction of the spreading
rate and the turbulence intensities are predicted. The
mixing of fuel and oxidizer in temporal evolving annular
mixing layers has been studied with direct numerical
simulation by Freund et al. [11]. In their study, convective
Mach numbers of the simulations range from M c ¼ 0:1
to M c ¼ 1:8. Scalar mixing was analyzed with probabil-
ity density functions and visualisation of the scalar
concentration.

Temporal evolving mixing layers display the main char-
acteristic of turbulence. Qualitative comparisons with
experimental results of the dominant mechanisms can be
made. But, such an approximation is not physical, for
example in the case of an interaction between a free shear
flow and shock waves. Then, sometimes it is necessary to
perform simulations of spatially evolving mixing layer.
LES of a spatially evolving mixing layer at the convective
Mach number of 0.62 has been carried out to investigate
scalar mixing by Sankaran and Menon [12]. These studies
have established that the linear Eddy model (LEM) was
capable of predicting scalar mixing in compressible mixing
layers. But the convective Mach number was not high
enough to obtain important compressibility effects.

Previous studies, discussed in another paper, have estab-
lished that LES is capable of predicting the compressibility
effects on the growth rate and on the Reynolds stress [13].
Large Eddy simulation (LES) is now carried out to investi-
gate passive scalar mixing in compressible mixing layers. In
the study of Sankaran and Menon [12], the gradient diffu-
sion closure was unable of capture the physics of scalar
mixing. However, in the case of the plane jet, the dynamic
Smagorinsky model and the dynamic mixed model was
capable of predicting the scalar mixing (Le Ribault et al.
[14,15]). Results of Na [16] also showed that the dynamic
mixed model is capable of predicting scalar transport in
channel with Schmidt number up to 10. The ability of
two subgrid models, the dynamic Smagorinsky model
and the dynamic mixed model to predict scalar mixing in
compressible shear layers at convective Mach numbers up
to 1.1 is assessed in this study.

This article documents and provides a discussion of
results of LES for the passive scalar in compressible mixing
layers. The governing equations, the subgrid models, the
numerical method and the simulation parameters are first
detailed. Principal results of the growth rate and the Rey-
nolds stress are briefly described in paragraph 6. Develop-
ment of mean scalar profiles and of scalar statistics are
presented in paragraph 7. In the last paragraphs, probabil-
ity density functions and instantaneous scalar fields are
discussed.
2. Governing equations

The flow is governed by the Navier–Stokes equations in
their compressible form, representing mass conservation,
momentum conservation and energy conservation. The
Navier–Stokes equations in the LES approach are filtered.
The top-hat filter with a filter width D is used.

The filtered equations were previously described in Le
Ribault [13,14]. The subgrid stress tensor qij ¼guiuj � ~ui~uj

is modeled, either by the dynamic Smagorinsky model,
either by the dynamic mixed model. The dynamic Smago-
rinsky model is also used for the subgrid terms appearing
in the pressure equation.

Since the simulations are performed for constant scalar
diffusivity, the non-dimensionalized filtered equations for
the passive scalar can be written as

oq~n
ot
þ o

oxk
q ~uk

~n ¼ 1

ReSc
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oxk
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o~n
oxk

 !
� oqqn
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oxk
ð1Þ

where qn
k represents the passive scalar subgrid term:

qn
k ¼gukn � ~uk

~n ð2Þ
The subgrid models (dynamic Smagorinsky and dynamic
mixed models), developed for the velocity field are also ap-
plied to the passive scalar equation. The Smagorinsky
model [17], for the passive scalar can be written as

qn
k ¼ �at

o~n
oxk

with at ¼ CdnD
2jSj and

jSj2 ¼ 2SpqSpq ð3Þ

and
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oul

oxl
dij ð4Þ

The coefficient Cdn is dynamically computed [18] and de-
pends on the local structure of the flow. The constant Cdn

is artificially set to zero during the few instances when it
is still negative.

Similar to the mixed model [19] for the velocity, the
mixed model for the passive scalar is also the sum of a
Smagorinsky part and a scale-similarity part.

qn
k ¼ �Cn

dD
2jSj o

~n
oxk
þ ukn� ukn ð5Þ

The constant of the Smagorinsky part is dynamically
computed. This model takes advantage of the correct dissi-
pation produced by the dynamic eddy-viscosity part while
the similarity part allows other effects such as the backscat-
ter of energy from subgrid-scales to resolved scales.
3. Numerical method and inflow conditions

Since the numerical method has already been largely
described by Le Ribault [14] and summarized in [15,13],
only its principal characteristics are recalled here.
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Fig. 1. Inlet mean streamwise velocity profile – M c ¼ 0:16.
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Fig. 3. Inlet mean scalar profile – M c ¼ 0:16.
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For the Navier–Stokes equations, spatial derivatives are
computed using a non uniform fourth-order compact
scheme of Lele [20]. In order to ensure long-time nonlinear
stability, a fourth-order nonuniform compact filter is
applied to the field at each iteration. The value of the filter
is optimized to keep to influence of the filter as weak as
possible is set equal to 0.4983 for the low compressible mix-
ing layers. The value a ¼ 0:5 corresponds to no filtering.
The key problem of the separation between modeling and
numerical errors was detailed in Le Ribault et al. [14]. A
fourth-order Runge–Kutta scheme is used for the time
integration.

For the passive scalar equation, a flux-corrected-trans-
port, FCT, scheme of Zalesak [21] is used. This scheme
had been chosen in DNS to make sure scalar remained
between 0 and 1 and the same scheme has been kept for
the LES computations [22,15]. A predictor stage is per-
formed with a 1st-order upwind scheme which produces a
monotone solution. The predicted solution is then modified
by a corrector stage using the difference between a 4th-
order compact evaluation and the low-order scheme. This
correction is nonlinearly limited to avoid spurious numeri-
cal oscillations.

Concerning the boundary conditions, on the outflow,
the upper and lower sidewall boundaries, non reflecting
conditions of Thompson [23], based on the characteristic
equations are used. Moreover, to isolate the interior of
the domain from the effects of the boundary conditions, a
buffer zone based on the approach of Hu [24] is used on
the non reflecting boundaries.

At the inflow, a hyperbolic tangent profile is used for
mean velocity:

U ¼ U 1 þ U 2

2
þ U 1 � U 2

2
tan h

y
2h

� �
ð6Þ

where h is the momentum thickness of the shear layer.
The same hyperbolic tangent profile is used for the pas-

sive scalar:

n ¼ n1 þ n2

2
þ n1 � n2

2
tan h

y
2h

� �
ð7Þ

with n1 ¼ 1:0 and n2 ¼ 0:0, respectively. The value of h used
for the passive scalar is the same as that used for the mean
longitudinal velocity profile. For the velocity, a broadband
forcing representative of isotropic turbulence is utilized at
the inflow and a lateral shape is applied such that the fluctu-
ation intensity peaks in the shear layers on either side of the
jet. The noise level produced by turbulence injection is equal
to q=DU ¼ 5% in the shear layer. The injected turbulence is
divergence free. The inlet profiles for the mean longitudinal
velocity, the streamwise fluctuation intensity RMSðuÞ and
the mean scalar are presented on the Figs. 1–3.

4. Simulation parameters

The convective Mach number M c ¼ U1�U2

c1þc2
measures

intrinsic compressibility of a mixing layer. Mixing layers
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at the convective Mach numbers of 0.16, 0.5 and 1.1 are
simulated. At the convective Mach number of M c ¼ 0:16,
compressibility effects are negligible. The convective Mach
numbers of 0.5 has been chosen to correspond to the exper-
iments of Elliot and Samimy [2]. where the compressibility
effects are moderate. At the convective Mach number of
1:1, important compressibility effects are expected.

The Reynolds number, based on the inflow momentum
thickness dh0

and the velocity difference DU , is equal to
Re ¼ qdh0

DU=l ¼ 300.
Preliminary computations have been performed on dif-

ferent grids to check the accuracy of the results. These com-
putations particularly show the importance of taking a
great number of nodes in the transversal direction z. To
prove that present results are grid independent in the z

direction, comparisons of evolution of momentum thick-
ness on three different grids are presented on the Fig. 4.
The size of the grid in the z direction remains the same
but the number of grid points is respectively equal to 30,
50 and 60. The differences between the results are small,
compared for example to differences providing from the
convective Mach number.

Table 1 summarizes the dimensions of the computa-
tional domains and the number of grid points for the differ-
ent cases. All the lengths have been non-dimensionalized by
the inflow momentum thickness dh0

. The resolution of sca-
lar concentration is set by the Batchelor scale and is typi-
cally estimated with kB � S�0:5

c dnRe�0:75
dn

where dn denotes
the layer thickness based on the passive scalar. Highly
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Fig. 4. Comparison of momentum thickness evolution obtained with the
dynamic Smagorinsky model on three different grids – M c ¼ 0:16.

Table 1
Computational domains parameters

Mc Lx � Ly � Lz Nx � Ny � N z Resolution

0.16 800� 144� 160 185� 119� 50 8kB � 2kB � 1:3kB

0.5 1000� 144� 80 227� 119� 50 8kB � 2kB � 2:5kB

1.1 2040� 820� 80 426� 179� 50 7kB � 2kB � 2:2kB
resolved measurements have suggested that the constant
of proportionality is around 25.

The grid length increases with the convective Mach
number because the length of the initial transient also
increases with the convective Mach number. The grids have
been kept as uniform as possible. In the y direction, the
grid is very fine in the center of the mixing layer, then a
slight stretching is used until the buffer zone.

Only one filter size D ¼ 2h, where h is the local grid spac-
ing, is used.
5. Compressibility effects on the growth rate and on the

Reynolds stress

In this paragraph, the main LES predictions for the
decrease of the growth rate and the Reynolds stress compo-
nents are summarized. All the results are detailed in [13].

An experimental curve, called ‘‘Langley curve” is
obtained from the compilation of results coming from
experiments with air–air shear layers. This curve gives the
shear momentum thickness non dimensionalized by its
incompressible counterpart as a function of the convective
Mach number. Shear layer thickness growth rates predicted
by the Langley curve have been plotted in the Fig. 5 along
with the present LES results. The spreading rate of the mix-
ing layers decreases with the convective Mach number in
agreement with experimental results.

All the Reynolds stress components slightly decrease
with the convective Mach number. Figs. 6 and 7 present
the dependence of the peaks streamwise and transverse
velocities on M c. The results of the two turbulence models
are compared with DNS results of Pantano and Sarkar [10]
and with experimental results of Goebel and Dutton [5,6]
and of Elliot and Samimy [2]. The difference between the
experimental results are very important on those quanti-
ties. The LES results are closed to DNS results. For the
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Fig. 5. Dependence of shear layer growth rate on M c.
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streamwise intensity, the values predicted by the LES mod-
els are in the range of experimental data. The values of
RMS(u) decrease even at the convective Mach number of
0.5. The decrease of RMS(v) is however less important
than in experimental results. The dynamic mixed model
predicts values slightly closer to experimental results than
the dynamic Smagorinsky model but the difference between
the two models prediction is weak.
Fig. 8. Isovorticity in a x� y plane – D
The Figs. 8 and 9 present isovorticity contours obtained
with the dynamic mixed model and the convective Mach
numbers of 0:16 and 1:1 in the plane xy. Those figures con-
firm the increase of the transition zone with the convective
Mach number. In the transition zone, the mixing layer
thickness stay relatively constant, then the thickness
increases linearly. For the M c ¼ 0:16 mixing layer, the
roll-up and the pairing mechanism appears clearly. When
the convective Mach number increases, the low Mach num-
ber organized structures are lost and the size of the struc-
tures decreases.

Concerning the overall prediction of the mean field and
the Reynolds stress, both models are in agreement with
experimental and DNS results.
6. Scalar mixing

This section provides a discussion of LES predictions of
scalar mixing. Because scalar profiles are very similar at
different Mach numbers, the full profiles are only provided
for the lowest and highest Mach numbers.

After a transition zone, the mean passive scalar data col-
lapse in self-similar like profiles. The profiles are plotted
against a similarity variable, g ¼ ðy � ycÞ=dn. yc is the trans-
verse location with ðn� n2Þ=ðn1 � n2Þ ¼ 0:5 and dn is the
thickness of the mixing layer defined as the distance
between the transverse locations where ðn� n2Þ=ðn1 � n2Þ
is 0.99 and 0.01. Fig. 10 shows the mean profiles obtained
with the two subgrid models for the M c ¼ 0:16 case. Exper-
imental results of Clemens and Mungal [4] obtained for
M c ¼ 0:28 are plotted together. The profiles predicted by
the two models are seen to be nearly identical. The mean
profile shows a single inflection point, consistent with
experimental observation of Clemens and Mungal [4].
Fig. 11 shows the mean profiles for the M c ¼ 1:1 case.
There are no observable trends in the self-similar profiles
shapes with increasing Mach number. The predictions of
the two subgrid models collapse.

Root-mean squared concentration (RMS) fluctuations
for the lowest and highest Mach numbers (M c ¼ 0:16 and
M c ¼ 1:1) are plotted in Figs. 12 and 13. The self-similarity
shape is predicted by the two models and the differences
between the two predictions are small. The peaks are smal-
ler at the convective Mach number of 1.1. The peak values
predicted by the two subgrid models are plotted together
with the experimental results of Clemens [4] in function
ynamic mixed model – Mc=0.16.



Fig. 9. Isovorticity in a x� y plane – Dynamic mixed model – M c=1.1.
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Fig. 10. Comparison of mean passive scalar obtained with the two subgrid
models – M c ¼ 0:16.
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Fig. 11. Comparison of mean passive scalar obtained with the two subgrid
models – M c ¼ 1:1.
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of the convective Mach number (Fig. 14). The values are
higher than those measured by Clemens and Mungal but
under-resolution of those measurements may explain the
difference. For a low convective Mach number, the peak
fluctuations obtained by Clemens and Mungal [4] are about
17% whereas Konrad [25], Fiedler [26] and Batt [27] found
fluctuations levels of 40%, 30% and 20%, respectively.
Some experimentalists use the cold chemistry techniques
to obtain quantitative mixing measurements that do not
suffer from resolution errors (Island et al. [28], Clemens
and Paul [9]). In the experiments of Clemens and Paul
[9], the peaks RMS values decrease from 0.15 to 0.1 for
convective Mach number varying from 0.35 to 1.3. But
those results were obtained for axisymmetric mixing layers,
so they are not presented on the Fig. 14. The Reynolds
number also plays a role in the peak RMS value, the lower
the Reynolds number, the higher the peak RMS is. More-
over the peak RMS values are higher in the pre-mixing
transition and then decrease in the self-similarity region.
The peaks of the RMS fluctuations predicted by the two
LES models decrease with the convective Mach number.
This is consistent with the experimental results of Clemens
and Mungal where the fluctuations at M c ¼ 0:28 are about
15% greater than those at M c ¼ 0:62. In the DNS of Fre-
und et al., the maximum values of RMS range from 0.31
at M c ¼ 0:1 to 0.22 for M c ¼ 1:5.

Profiles of the scalar fluxes for the M c ¼ 0:1 and
M c ¼ 1:1 cases are plotted in Figs. 15 and 16. No experi-
mental results are available on those quantities. The axial
and transversal scalar fluxes both decrease with the convec-
tive Mach number. This is in contradiction with the results
of Freund et al. [11] that show a decrease of the radial com-
ponent fvn while the peak of the axial component ~un
remains nearly constant between the lowest and highest
Mach numbers. However the mixing layers of Freund
et al. were annular mixing layers. In the case of plane mix-
ing layers, all the Reynolds stress components decrease
with the convective Mach number. In the case of the plane
jet, the DNS of Pantano and Sarkar [10] and the LES of Le
Ribault [15] show that the anisotropie tensor is strongly
affected by M c during the initial transient and then
approaches asymptotic values that are weakly dependent
on M c. This may explain why scalar fluxes peaks also have
an isotropic behavior.
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7. Evolution of the passive scalar probability density

functions

The probability density function (PDF) of the mixture
fraction obtained with the dynamic Smagorinsky model
for M c ¼ 0:16 and for M c ¼ 1:1 in the self-similarity zone
are shown in Figs. 17 and 18. The PDF are presented for
five lateral locations, ranging from the mixing layer center-
line outwards through the upper and lower shear regions.
The filled symbols across the tops of the plots give the
mean values associated with the PDF drawn with the cor-
responding unfilled symbols.

For the low convective Mach number mixing layer, the
PDF are broad with low peaks that do not correspond
exactly to the mean values. Except in the middle of the mix-
ing layer, the most probable value jumps from n ¼ 0 to
n ¼ 1 with increasing g. This corresponds to a non-march-
ing comportment. In a non-marching PDF, the most prob-
able value remains at a constant location across the layer
irrespective to the local mean value. This type of PDF char-
acterizes mixing which is dominated by large-scale engulf-
ing of pure fluid from external streams. This non
marching behavior is in agreement with the incompressible
results of Konrad [25], Koochesfahani and Dimotakis [29],
and of Masutani and Bowman [30]. But it does not agree
with the results of Clemens and Mungal [4]. However,
the difference in marching versus non-marching PDFs is
also tied to how developed the turbulence is. This point
is discussed in the article of Karasso and Mungal [31]. In
the case of the plane jet [15] the PDFs also change from
marching to no marching and tilted during the evolution
of the scalar field. The differences with the results of Clem-
ens and Mungal [4] might come from a much higher Rey-
nolds number compared to our simulations.
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For the supersonic mixing layer, the PDF peaks corre-
spond to the mean value of the passive scalar. In a march-
ing PDF, the most probable value varies across the layer
following the local mean value of the scalar. This type of
PDF is characteristic of the classical notion of mixing dom-
inated by the small scales of motion. The peak scalar
marches across the mixing layer, similar to the results of
Clemens and Mungal [4] in compressible mixing layers.
Compressibility acts to make the PDFs march, even at
low Reynolds number. This result was also discussed in
the numerical simulation of Freund et al. [11].

Figs. 19 and 20 show the PDF of the mixture fraction
obtained with the two subgrid models for M c ¼ 0:16 and
for M c ¼ 1:1 at the transverse location corresponding to
the similarity coordinate g ¼ 0. There is a weak trend of
narrower and taller PDFs with increasing convective Mach
number.
Broader PDFs indicate that a larger range of concentra-
tion levels are detected at a given location. These broad
PDFs are also responsible for the larger RMS fluctuations
found at the lower convective Mach number. Large eddies
will broaden the PDFs since fluid can be transported from
regions far from the measurement location. On the con-
trary, a layer that is dominated by small eddies will pro-
duce concentration PDFs that are more narrow. This
argument suggests that scalar transport in compressible
layer may occur through smaller-scale eddies. Those argu-
ments were also developed in Clemens and Mungal [4].

8. Scalar field visualisation

The next Figs. 21 and 22 show the contours of the
filtered instantaneous scalar obtained with the dynamic
mixed model for the two convective Mach numbers
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Fig. 20. PDF of the mixture fraction at g ¼ 0 – M c ¼ 1:1.
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M c ¼ 0:16 and M c ¼ 1:1. In the transition zone, the mixing
layer thickness stays relatively constant. Then, the shear
layer gets perturbed and rolls up into vortical structures.
In this region, the thickness of the mixing layers increases
linearly. For M c ¼ 0:16, the mixing layer thickness begins
to increase after about 200 dh0

and for M c ¼ 1:1 its begins
to increase after about 500 dh0

. The increase of the transi-
tion zone with the convective Mach number is confirmed
by experimental results.
Fig. 21. Contours of the passive scalar in a x� y

Fig. 22. Contours of the passive scalar in a x�
In the high Mach number mixing layer, the mixing layer
is pushed down toward the subsonic side. This is consistent
with the observation in the experiments where a similar
downward motion due to transverse pressure non-equilib-
rium was observed.

At low M c, the turbulent structures appear primarily as
rollers. There are large intrusions of free-stream fluid into
the layer. At high M c, the structures are more irregular
and appeared as jagged, irregular structures. When the
convective Mach number increases, the low Mach number
organized structures are lost and the size of the structures
decreases [4].

A zoom of the contours are presented in the Figs. 23 and
25. The size of the two boxes are the same.

Zoom of the contours of the mixing index nð1� nÞ are
also presented on the Figs. 24 and 26. This quantity is
equal to zero outside the shear layer so that the structures
appear more clearly than in the case of the isocontours of
the passive scalar. For the low Mach number mixing layer,
the Figs. 23 and 24 reveals the domination of the layer by
coherent structures. The structures are smaller for the high
convective Mach number mixing layer (Figs. 25 and 26).
They appear less elliptical and typically have a more disor-
ganized appearance. The decrease in organization of the
layer with increasing Mach number is in general agreement
with the imaging results of Clemens and Mungal. The iso-
values produced by the mixing index are very similar to iso-
values of the passive scalar and the same conclusions can
be made.
plane. Dynamic mixed model – M c ¼ 0:16.

y plane. Dynamic mixed model – M c ¼ 1:1.



Fig. 24. Zoom of the contours of the mixing index in the self-similarity
region. Dynamic mixed model M c ¼ 0:16.

Fig. 25. Zoom of the contours of the passive scalar in the self-similarity
region. Dynamic mixed model M c ¼ 1:1.

Fig. 26. Zoom of the contours of the mixing index in the self-similarity
region. Dynamic mixed model M c ¼ 1:1.

Fig. 23. Zoom of the contours of the passive scalar in the self-similarity
region. Dynamic mixed model M c ¼ 0:16.
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9. Conclusion

LES of spatially developing mixing layers at three differ-
ent convective Mach numbers are carried out. Two subgrid
models are compared: the dynamic Smagorinsky model
and the dynamic mixed model. The growth rate and the
velocity statistics of the compressible mixing layer are sup-
pressed relative to its incompressible counterpart. Quanti-
tative comparisons of the mean and RMS of velocity
fluctuations show that both models reasonably resolve
the shear layer.

The results on the scalar properties (mean and RMS)
confirm that the two models can accurately capture the
physics of compressible mixing. Good quantitative agree-
ment with experimental data is obtained. The principal
compressibility effects such as the decrease of the RMS sta-
tistics, qualitative changes in the PDFs and in the struc-
tures shape are predicted by both models. However, from
a priori tests, the dynamic mixed model is known to pro-
vide better representation of the subgrid stress tensor. A
posteriori simulations, in the case of the plane jet also con-
firmed this fact by comparison with DNS results. The use
of the dynamic mixed model is then recommended.
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